MCMC based estimation of term structure models
نویسندگان
چکیده
We develop a state space framework for estimating term structure models, where latent Markovian state variables are mapped non-linearly into observable market data. The measurement equation of our framework is explicitly constructed such that it takes raw market prices and rates as direct inputs. We thus avoid entirely, the need for data preprocessing, such as the use of ad hoc interpolation and data smoothing techniques. As our general estimation approach, we demonstrate how Markov chain Monte Carlo techniques are well suited for handling complex functional relations between state variables and data, parameter restrictions and other features of popular term structure models, which have proved hard to handle for alternative econometric techniques. Our estimation framework therefore handles popular multi-factor model specifications such as exponential affine and quadratic models, but facilitates richer Markovian HJM model specifications as well. Efficient Markov chain Monte Carlo implementations are highly model dependent. Therefore, having developed the general estimation principles of our framework, we demonstrate how one could approach sampler specification for a particular model example which we fit to a panel data set of swap and money market rates. JEL Codes: C15, C33, C51, E43, G12
منابع مشابه
Spatial Design for Knot Selection in Knot-Based Low-Rank Models
Analysis of large geostatistical data sets, usually, entail the expensive matrix computations. This problem creates challenges in implementing statistical inferences of traditional Bayesian models. In addition,researchers often face with multiple spatial data sets with complex spatial dependence structures that their analysis is difficult. This is a problem for MCMC sampling algorith...
متن کاملComparison of Different Estimation Methods for Linear Mixed Models and Generalized Linear Mixed Models
Linear mixed models (LMM) and generalized linear mixed models (GLMM) are widely used in regression analyses. With the variance structure dependent on the random effects with their variance components, the parameter estimation of LMMs is more complicated than linear models (LM). Generally, we use maximum likelihood estimation (MLE) together with some procedure such as derivative free optimizatio...
متن کاملThe Rise of Markov Chain Monte Carlo Estimation for Psychometric Modeling
Markov chain Monte Carlo MCMC estimation strategies represent a powerful approach to estimation in psychometric models. Popular MCMC samplers and their alignment with Bayesian approaches to modeling are discussed. Key historical and current developments of MCMC are surveyed, emphasizing how MCMC allows the researcher to overcome the limitations of other estimation paradigms, facilitates the est...
متن کاملThe Family of Scale-Mixture of Skew-Normal Distributions and Its Application in Bayesian Nonlinear Regression Models
In previous studies on fitting non-linear regression models with the symmetric structure the normality is usually assumed in the analysis of data. This choice may be inappropriate when the distribution of residual terms is asymmetric. Recently, the family of scale-mixture of skew-normal distributions is the main concern of many researchers. This family includes several skewed and heavy-tailed d...
متن کاملComparison among Posterior Densities Estimation using by MCMC Techniques
This article has no abstract.
متن کامل